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Passing to the case y = X, we note that although the function @* (p, 0) is multi- 

valued, the same reasoning applies as in the case just analyzed since we can consider 

its single-valued branch. The integral (2.3) assumes the form 

An analogous decomposition of the integral into two parts, the use of asymptotic ex- 

pressions for the integrand function, the same substitution of variables, and the ,applica- 
tion of the saddle point method lead to the asymptotic expression 

ln the case y = 3n / 4 , analogous considerations yield the formula 
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Conditions given in [l, 21 for the absence of shocks in the flow in the vicinity 
of the center of a nozzle for two-dimensional vortex-free flows of an ideal 
gas are generalized to the case of rotational flows. Both continuous flows and 

flows with shock waves are constructed. 

1. We take the origin of a Cartesian system of coordinates at the nozzle center, 
with the z-axis directed along the axis of the nozzle and the y-axis perpendicular to 
it. We assume that in the neighborhood of the nozzle center the entropy s (y) is a 
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sufficiently smooth function, so that the representation 

s = soy + ‘I2sy’L + o (Y”) 
is valid. 

Restricting ourselves to flows symmetric with respect to the 5 -axis, we set ~0 = 0. 
Then in the transonic approximation the system of equations describing the isoenergetic 
flow of an ideal gas has the form @] 

-uu, + utj = 0, u, - Uy = sy (1.1) 

Let us pose the following Cauchy problem for the system (1.1) in the region y > 0 
On the axis of symmetry y * 0 

u = ax, x<o; u = cx, z> 0 (1.2) 

v=o (a > c >, 0) 

We represent the required solution in self-similar form [4, 51 

u = 1s I Y” f (E), v = I s l”‘Y3g (E) (1.3) 

j = J ,$ pq-2 (s # 0) 

Substituting (1.3) into the system (1.1). we obtain two ordinary differential equations 

for f and g. Eliminating g from these equations, we obtain a nonhomogeneous second 
order equation for determining If 

(f - 4g2)f" + (f')2 + ZEf' - 2f = sign s 

The function g is obtained from the relation 

(1.4) 

g = ‘i, [4Ef + 2E sign s + (f - 4E2)f'l 

Equation (1.4) admits the simple particular solution [S] 

(1.5) 

f = A5 + i/a (A2 - sign s) (1.6) 

where -4 is an arbitrary constant. The single-parameter family of lines (1.6) has the 
envelope f = --‘/2 (E’ + sign s). Points E,, of the parabola f = 4E2 are singular 
points for the Eq. (1.4) and correspond to incoming and departing limiting characteris- 

tics, C_" (E,< 0) and C+O (E,, > 0). res pe ctively. For A < 2 1/z/3, sign s = 1 , 
the line (1.6) does not intersect the parabola f = 4E2. This means that the problem 
(1.2) has a solution only providing a =_c, and the corresponding solution is analytic. 
To construct the solution for A > 2 -(2 / 3, sign s = 1 , we divide the flow region 
into three parts : Region 1 , to the left of the characteristic C_" ; Region 2 , between 
the characteristics C,’ ; Region 3, to the right of the characteristic C+'. Using the 
solution (1.6). we can satisfy the initial conditions (1.2) by setting A A a Isl-‘/z in 
Region 1 and A = c Isl-‘L* in Region 3. In the intermediate Region 2 the solution 
of Eq. (1.4) is obtained by a numerical integration from the continuity condition on the 
limiting characteristics. 

Using Eq. (1.6). we can construct a continuous flow with weak discontinuities on the 
limiting characteristics. In Region 1 let the flow be described by the solution (1.6) 
with the constant A, and in Region 2 by the same solution with the constant B. 
By effecting a coalescence of these solutions on the characteristic (I”, we obtain, in 
particular, B = [(!)A2 - 8 sign s>?‘i - 5A] / 4. The condition of continuity on the 
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characteristic C,’ gives the value of the constant 

C = - [(9B2 - 8 sign s)‘/z + 5 BI / 4 

in Region 3. Analogously to the vortex-free case [Z], the solution constructed is analy- 

tic and limiting in the sense that all the other integral curves which describe shockless 
gas flow are situated between them. The range of values of c / a corresponding to the 
continuous flows is determined by the inequality 

q(A)<cla<l, q (A) = c / A 

which generalize Frank19 inequalities to rotational flows. For A --t co which is equi- 
valent to s --t 0, we have 0’1 + 1/4. The graph of the function ~1 is shown in Fig.1. 
.Numerical analysis shows that for values of d belonging to the interval 

2~/Z/3&‘<5~~/6 

no continuous solutions exist in Region 2 with the exception of the solution (1.6) with 

B = A. For A < 113, sign s = -1 , the weak discontinuity arriving at the nozzle 
center along C_” gives the effect of an acceleration of the flow, an occurrence which 
is not possible in the vortex-free case. 

Figure 2 presents the family of integral curves of Eq. (1.4) for A = 0.1, sign s = 

- 1; to the Curves 1 and 2 there correspond f = 4 Ez and f = - l/2 (E" - 1). 

2. In constructing the discontinuous solutions it is necessary to satisfy the boundary 
conditions at the front of the shock wave 

f2 f fl = 8E22 (2.1) 

lOE2f2 + (f2 - 4E2,) f2' = W2fl + (fl - @'2")fl 

The subscript 1 refers to the state of the gas ahead the shock wave, the subscript 2 - 

behind the shock wave. The coordinate t2 of the shock front is yet to be defined. The 
relations (2.1) coincide with the corresponding conditions for vortex-free flows [ 21. 

Figures 3 and 4 show the behavior of the integral curves for flows with shock waves. 
Points on the curves rl and I’s correspond to the state of the gas ahead the shock wave 

and immediately behind it. The Curves 1 and 2 correspond to f = 4g2 and f = 

-1/2 (E" f 1). In Fig.3 (A = 3, sign s = 1) the integral curves considered are 
located below the limiting solution with weak discontinuities. Since E2 > 0, the shock 
wave originates at the nozzle center and extends downstream. The velocity behind the 
shock can be either supersonic or subsonic. We note that extension of the flows in the 
Region 3 by the introduction of a shock wave cannot be accomplished uniquely; the 
corresponding integral curves may intersect rl in several points. --i’ 

In Fig. 4 (A = 1.5, sign s = 1) the integral curves lying above the line (1.6) are 
physically unreal because of the limiting curves which are unavoidable by the introduc- 
tion of a shock wave. This gives an indentation in the region P, of the existence of 
flows with a shock wave in Fig. 1. The remaining integral curves, describing flows with 
shock waves, are located in the region of existence of continuous flows. Therefore the 

prior appearance of a limiting curve in the flow is not a necessary condition for the 
formation of a shock wave, as is the case for vortex-free flows 121. The integral curves 
may pass through the points rl either in a continuous manner or may undergo discon- 



Conditions for shockless state of the vortex flow 989 

tinuities, The coordinate of the shock front Es can be positive or negative, i. e. either 
departing or arriving shock waves are allowed. 

In the range of values 

a shock wave is formed and the flow velocity behind the shock increases in the direction 
towards the exhaust end of the nozzle. 
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3. Let Us assume a > 0 and c < 0 in the Cauchy data (1.2). Then the values 
of c / a, defined by the inequalities 

CD, (A) < c / o < @)3 (A) 
where 

@ (A) = - [(9A2 - 8 sign s)l’, + 5Al / 44 

@s(A) = 
i 

BJA, A>17J&12 

- 1(9C2 - 8signs)‘:.z+5C]/4A, A<171/2112 

correspond to the continuous flows, 
For A --t 00 (s + 0) we have m2 -+ -2, (D, --f --l/s. If 

@‘a (A) < c / a < 0, (D,(A) = B l-4. 

then a shock wave arises and the flow velocity behind the shock decreases in the direc- 
tion towards the exhaust end of the nozzle. The dependence of @a, @s, @a on A is 
shown in Fig. 1. Here the continuous flow corresponds to the region Q* . 

The authors thank S. V. Fal’kovich for useful discussions on this paper. 

REFERENCES 

1. Frankl’, F. I., On the theory of Lava1 nozzles. Izv. Akad. Nauk SSSR, Ser. 

Matem., Vol. 9, NP5, 1945. 

2. Ryzhov, 0. S., Shock waves formation in Lava1 nozzles. PMM Vol. 27, l?2, 

1963. 
3. Shifrin, E, G., Two-dimensional rotational flow at the neighborhood of the 

point of orthogonality of the sonic line to the velocity vector. Izv. Akad. 

Nauk SSSR, Mekhan. Zhidk. i Gaza, Ne6, 1966. 
4. Fal’kovich, S. V., On the theory of the Lava1 nozzle. PMM Vol. 10, N*4,1946. 
5. Il’inskaia, G, B. and Lifshits, Iu. B., On transonic flow disturbances 

due to vorticity. Izv. Akad. Nauk SSSR, Mekhan. Zhidk. i Gaza, Npl, 1971. 

Translated by J. F, H. 

UDC 532.516 

ON STABILITY OF THREE-DIMENSIONAL PERIODIC MOTIONS IN HYDRODYNAMICS 

PMM Vol. 37, N’6, 1973, pp. 1044-1048 
Iu. B. PONOMARENKO 

(Moscow) 
(Received March 27, 1972) 

We obtain exact conditions for the stability of periodic motions. We show that 
the conditions found in n] are necessary and sufficient, but they are only appli- 
cable to motions not dependent on time. The conditions given in [Z] are 
applicable in the general case but are only sufficient (necessary) conditions 
of instability (stability). We consider the dependence of stationary motions 
on parameters. 


